
AI in practice 
 

Analysis from a software engineering 
perspective  
 
November 2025 
 
 
Written by:  
Joost de Jong    jdjong@sogyo.nl   
 
Edited by: 
Glenn Mulder    gmulder@sogyo.nl  
 
 
 
 
 
 
 
 
 
 
 
 
 

Version Date Authors Description 

1.0 Nov. 03, 2025 Joost de Jong 
Glenn Mulder 

Release 

1.1 Nov. 05, 2025 Joost de Jong 
Glenn Mulder 

Added visual 
summary 

    

    

 

 

mailto:jdjong@sogyo.nl
mailto:gmulder@sogyo.nl


 

Introduction​ 3 
Beyond Bugs: Understanding Inherent Outcome Reliability (IOR)​ 4 

Definition​ 4 
The Unfixable Limitation​ 4 
Example: Cat vs. Dog Image Classifier​ 5 
Software components​ 6 

Determinism of the problem space​ 6 
Modelling possibilities of the problem space​ 7 
Reliability of the software executing the model​ 8 
Summary​ 9 

Dealing with unreliable outcomes​ 10 
Lessons from AI's Past​ 10 

The "Human-in-the-Loop" Approach​ 10 
Optimizing Human Verification​ 11 
Risk and Confidence Thresholds​ 11 
The Imperative of Auditability​ 11 

Statistical Analysis​ 12 
Pattern Matching for Anomaly Detection​ 13 
Strategic Error Trade-Offs: Precision vs. Recall​ 13 

Prioritizing Recall (Minimizing False Negatives)​ 13 
Prioritizing Precision (Minimizing False Positives)​ 13 

Beyond Training: Influencing the Outcome​ 14 
Language Models​ 15 

Beyond Training: The Imperative of Prompt Engineering​ 15 
Self-Correction: An Emergent Capability​ 15 
Consensus-Based Responses (Self-Consistency)​ 15 
Explicit Uncertainty Statements​ 16 
Constrained Generation​ 17 
Architectural Constraints: Moving Beyond Natural Language​ 17 
Automated Feedback Loop for Correct Outcomes​ 18 

The Value of AI-Powered Software Components​ 20 
Outperforming Humans at Scale​ 20 
Automating Complex Tasks​ 20 
Pattern Discovery​ 21 

The Impact of AI-Powered Software Components on Software Architecture​ 22 
Latency​ 22 
Role of component: Processer/Transformer​ 22 
Role of component: Router/Decision Engine​ 23 

  Utrechtseweg 301, 3731 De Bilt, The Netherlands, info@sogyo.nl ​ ​ ​    Page 1 of 33 



 

Role of component: Autonomous Agent/Orchestrator​ 24 
Draft or Decide? Two Roads for AI Integration​ 25 

The "Draft & Review" Path (Human-in-the-Loop)​ 25 
The "Trust & Execute" Path (Fully Automated)​ 25 

Impact of AI-Powered Software on Software Engineering​ 26 
Conclusion: Engineering a Reliable Future​ 28 
Appendix 1: inherent output reliability (IOR) mathematical model​ 29 
References​ 30 

 

  Utrechtseweg 301, 3731 De Bilt, The Netherlands, info@sogyo.nl ​ ​ ​    Page 2 of 33 



 

AI-Powered Engineering: A Practical Guide 
Introduction 

Artificial Intelligence is shifting from niche technology to general purpose tooling (Freitag 2025). 
With large language models (LLMs) available to all and the rise of Language Model (LM) 
based AI services, the challenge for software engineers and organizations is no longer if 
they should build with AI, but how to do so reliably. Unlike traditional software, AI-powered 
features introduce a new challenge: the system can be perfect, yet still produce a wrong 
answer. LLM power is impressive, but delivering dependable, high-quality features requires 
specific strategies to ensure outcome reliability (Wohlin et al. 2003) in production. 

Here, we discuss guidelines for building dependable AI-powered software. We start with the 
concept of inherent outcome reliability, dive into practical strategies for imperfect scenarios 
and techniques to improve performance, and conclude with the architectural impact of 
integrating these components and key considerations for autonomous AI operation. 
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Beyond Bugs: Understanding Inherent Outcome Reliability 

Definition 

Inherent outcome reliability represents the theoretical, upfront probability that a given 
software component will produce a valid output for a random, valid input, with a value ranging 
from 0 to 1. 

●​ A value of IOR​=1 means you are theoretically certain that every valid input will yield a 
correct output. 

●​ A value of IOR=0 means you are theoretically certain that every valid input will result in a 
wrong output. 

(A more detailed mathematical explanation can be found in appendix 1.) 

The Unfixable Limitation 

If a software component's theoretical, upfront outcome reliability is less than 1, you can't always 
trust its output. This is a fundamental limitation that cannot be fixed by better programming. 

We explicitly use the terms theoretical and upfront to distinguish this concept from fixable 
issues like programming bugs, faulty logic, or network failures. In those common failure cases, 
the resulting output (even if it's an error message) is a truthful representation of what 
happened: the failure is reported honestly. An inherent outcome reliability of less than 1, 
however, means the output itself, the final answer, is an unintended falsehood, even if the 
code that produced it is perfectly implemented. 
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Example: Cat vs. Dog Image Classifier 

 

Consider a function IsCat(image) powered by a Machine Learning (ML) model (Paleti and 
Angelou, 2024). 

●​ Perfect Code, Inherently Imperfect: The code running the ML model is bug-free. It 
processes the image and outputs "Cat" or "Not Cat (Dog)" according to the 
parameterization and training of the underlying model. That is, the implementation is 
correct. 

●​ Inherent Limitation: Even the best ML models are statistical systems. Due to 
ambiguous images, imperfect training data, or model limitations, there's always a 
theoretical, non-zero chance it will misclassify an image (Paleti and Angelou 2024). 

If IsCat(image) outputs "Cat," there's a small, built-in probability that the image is actually a dog. 
This isn't a code bug, a hardware problem, or a network error. It's an unfixable limitation 
because the model makes predictions based on probabilities, not absolute certainty. 

Therefore, the inherent outcome reliability is less than 1 (e.g., IOR=0.98), reflecting the 
theoretical chance of a wrong classification, regardless of code quality. 

This IOR​ < 1 reality forces a shift from programming for correctness to programming for trust. 
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Software components 

A software component, when viewed in the context of inherent outcome reliability, consists of 
three dimensions, mirroring the traceability path in system development (e.g., as found in 
Software Product Line Engineering (Pohl, Böckle, and Linden 2011)): 

●​ The problem space: The real-world context you're trying to solve. 
●​ The model: The abstraction of the problem space. 
●​ The software: The code that executes your model. 

Let's examine how each of these contributes to a component's inherent outcome reliability. 

Determinism of the problem space 

The problem space can be either deterministic or non-deterministic. 

●​ In a deterministic problem space, a given input always produces the same output. For 
example, in a cash register system, the total for items costing $10 and $12 will always be 
$22. 

●​ In a non-deterministic problem space, the same input can produce different, yet valid, 
outputs (Udawatta et al. 2008). For example, a game of Yahtzee produces different dice 
rolls each time, but each roll is a valid outcome. 

Crucially, the determinism of the problem space itself does not affect inherent outcome 
reliability. If all possible outputs are valid, inherent outcome reliability is 1. This makes sense: a 
system that accurately reflects reality is, by definition, reliable. 

 
Figure 1. Deterministic vs. Non-deterministic problem space in relation to inherent outcome 

reliability 
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Modelling possibilities of the problem space 

This is where things get interesting. Even if a problem space is deterministic, it might be 
impossible to create a perfect model for it. Consider fraud detection (Lindemulder and Kosinski 
2024). A transaction is either fraudulent or it is not: a deterministic reality. However, creating a 
perfect model is impossible because fraudulent transactions are designed to look normal. You 
can't know for sure if a transaction is fraudulent without a full human investigation. 

 
Figure 2. Imperfect modeling capabilities in relation to outcome reliability 

This inability to create a perfect model for the problem space leads to an inherent outcome 
reliability of less than 1. The Cynefin framework (Snowden 1999) can help determine if your 
problem space is suitable for perfect modeling. In the Cynefin framework, when a problem 
space resides in the Simple or Complicated domains, creating a perfect model is theoretically 
possible (Mamonov 2023). 

However, even in the Complicated domain, achieving a perfect model is often impractical. 
While cause-and-effect relationships are discernible and solvable by experts, the number of 
variables or costs and time required to map every factor can be prohibitive. As a result, 
complicated domains often rely on imperfect (yet practical) models that balance accuracy with 
feasibility.  

In contrast, when the problem space moves into the Complex or Chaotic domain (as with 
dynamic financial fraud detection) the system deals with unknowable factors, meaning a perfect 
model is fundamentally impossible (Mamonov 2023). 

  Utrechtseweg 301, 3731 De Bilt, The Netherlands, info@sogyo.nl ​ ​ ​    Page 7 of 33 



 

 
 

Figure 3. Cynefin framework 

Reliability of the software executing the model 
Traditional software execution is dependably robust: Modern systems and code reliably 
translate programming instructions into predictable, correct outcomes that are infinitely 
repeatable. Software itself does not contribute to the decay of this inherent reliability. 

The challenge to reliability emerges when incorporating Artificially Intelligent (AI) 
components. Unlike conventional, AI models operate by prediction, leading to outputs that can 
be non-compliant or incorrect relative to the task's initial intent. In this way, leveraging AI 
introduces a stochastic element to the software's execution, thereby reducing the component's 
overall outcome predictability and reliability. 

 

Figure 4. AI-powered software in relation to outcome reliability 
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You can improve outcome predictability and reliability by using techniques to ensure the outputs 
are valid. In some cases, you can even bring inherent outcome reliability back to 1. We'll cover 
that later. 

Summary 

In short, a software component's inherent outcome reliability  is influenced by two factors: 

1.​ Ability to model the problem space. (Refer to the Cynefin framework.) 
2.​ Reliability of the software executing the model. (Especially with the use of 

probabilistic technologies like LLM’s (Vaswani et al. 2017).) 

The problem space itself has no impact on reliability. This diagram illustrates how these factors 
combine to determine a software component's inherent outcome reliability: 

 

 
 

Figure 5. A software component’s inherent outcome reliability factors 
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Dealing with unreliable outcomes 

Today, LM based AI services create new opportunities for organizations. As discussed in the 
previous section, this introduces software components with an inherent outcome reliability of 
less than one, meaning they will inevitably produce incorrect outputs. Therefore, 
organizations and software engineers leveraging LM based AI services must acknowledge this 
fundamental uncertainty and develop strategies to manage it. 

Lessons from AI's Past 

Fortunately, coping with unreliable outputs is not a new challenge in software engineering. We 
can draw valuable lessons from domains where AI has been used for years, such as spam and 
fraud detection or speech and image recognition. These established fields offer proven 
methods for managing unpredictable, probabilistic results. 

The "Human-in-the-Loop" Approach 

 
Figure 6. Human in the loop (HITL) 

The most straightforward way to manage unreliable outcomes is to introduce a human check: 
the "Human-in-the-Loop" (HITL) approach (Beetroot 2025). 
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For example, consider an AI coding agent used to generate a software codebase. In this 
scenario, HITL means a competent software developer is actively involved, steering the 
model with well-drafted requirements and precise prompts. The developer uses their 
expertise to validate that the generated code is not only functional but also meets critical 
engineering standards, ensuring it is simple, maintainable, validated, and valuable to the 
project. 

Similarly, in fraud detection, an AI system might flag a transaction as 'Suspicious' (high risk), 
but a human analyst still reviews the full account history before definitively blocking the 
transaction, preventing a false positive for a legitimate customer. 

In contrast, simply accepting AI outputs without review or constraints could be defined as 
"vibe-coding pur sang." This approach, where unvalidated results are blindly integrated, 
represents the highest level of risk acceptance, betting on unverified code and accepting the 
high probability of future technical debt or system failure (Visibee 2025). 

Optimizing Human Verification 

In many cases, universal verification is not feasible. In those cases, organizations can opt for 
sampling, verifying only a portion of the outcomes. Sampling is most often applied with 
risk-based approach: 

●​ High-Risk Outcomes: A business might mandate human review for any outcome where 
the potential negative impact is too great, such as a financial transaction involving a 
significant sum of money. By focusing verification efforts on these high-stakes results, 
we can maximize the value of the human effort. 

Risk and Confidence Thresholds 

Risk assessment can be further optimized by incorporating confidence scores for the AI's 
output (Chutani 2024). Organizations can establish formal protocols, practices and confidence 
score thresholds that define the point at which the consequences of an incorrect output are 
deemed acceptable without human intervention to fine-tune the balance between automation 
and oversight. 

The Imperative of Auditability 

For the Human-in-the-Loop technique to function effectively, and to earn user trust, the entire 
process must be auditable (Uday 2025). This isn't merely about regulatory compliance; it's 
essential for debugging, improving system performance, and maintaining long-term 
stakeholder trust in the AI system. 
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Statistical Analysis 

Alternatively, statistical analysis, which focuses on monitoring the component's performance 
over time rather than validating specific outputs, can be used to deal with low outcome 
reliability. 

Performing statistical analysis on complex, multi-step systems, like an agentic AI service, is 
difficult. Because an agent's reasoning, tool calls, and overall process are non-deterministic, 
validating a single run is often impossible. The solution is to use statistical sampling, 
evaluating a small, but representative, sample of outputs using a human-in-the-loop approach 
and automated evaluation techniques. This carefully selected, high-quality dataset then serves 
as a statistically valid proxy for the overall system performance. 

If you establish a baseline accuracy or success rate of 90%, you can monitor this metric 
constantly and automatically compare it to these established values. If the monthly sampled 
correctness level drops to 80%, this is a clear sign that something is fundamentally wrong. This 
dip in performance could be caused by data drift (Martyr 2025), a change in statistical 
properties of your input, or concept drift (Stankevichus 2025), a change in the relationship 
between your input and output. 

 

Figure 8. Data drift, input data changes. Concept drift, the meaning of the output changes. 

By catching these performance trends early, you'll know exactly when and how to intervene. For 
instance, a drop caused by data drift usually necessitates fine tuning the model with new 
data, using a new version of the model or choosing another model altogether. In contrast, 
concept drift might demand a deeper adjustment to the system’s underlying logic or rules to 
maintain reliability. 
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Pattern Matching for Anomaly Detection 

A core component of this statistical monitoring is pattern matching, which is used to identify 
and quantify the frequency of specific output patterns, both correct and incorrect, to find 
anomalies and deviations. This involves defining an expected output pattern (a sequence of 
events, a data structure, or a predefined set of relationships) and comparing the component's 
output against it. 
 
By looking for specific deviations from this expected pattern, statistical methods can effectively 
detect and categorize performance drops like data drift or concept drift, allowing engineers to 
focus their interventions precisely where the system is failing (Onsem et al. 2022). 

Strategic Error Trade-Offs: Precision vs. Recall 

A key part of dealing with unreliable outcomes is determining which type of error is more 
acceptable: false positives or false negatives. This choice is often framed as a strategic 
trade-off between precision and recall (KeyLabs 2024). Precision is the fraction of detections 
that represents a true case while recall is the fraction of true cases that were detected. The 
former tells us how many wrong detections we get. The latter tells us how many of our cases 
are not detected. See figure 9. 

Prioritizing Recall (Minimizing False Negatives) 

In high-stakes scenarios like fraud detection, you must prioritize Recall (sensitivity), which 
means catching every possible positive instance. In the case of fraud, this minimizes false 
negatives, i.e. cases where a fraudulent transaction is missed. The trade-off is an increase in 
false positives, legitimate transactions incorrectly flagged as fraud. While these require costly 
manual review, the benefit of preventing massive financial risks outweighs this inconvenience. 

Prioritizing Precision (Minimizing False Positives) 

Conversely, in systems where a false alarm causes disruption or distrust, you must prioritize 
Precision (positive predictive value). This minimizes false positives. Consider your AI coding 
agent example: if the system constantly flags correct, compliant code as 'High Risk' (a false 
positive), the developer will waste time investigating or, worse, begin to ignore the warnings 
altogether, eroding trust in the system. Here, you accept a few more false negatives (a small 
amount of faulty code is missed) in exchange for high confidence in the agent's warnings, 
allowing the developer to work efficiently. Furthermore, false negatives can be caught by the 
expert developer further diminishing the impact of misclassification. 
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Figure 9. Confusion matrix, precision vs. recall 

An organization should balance Precision and Recall strategically, using responsible risk and 
confidence thresholds, to determine the operational constraints that best support the ultimate 
business goal. Such constraints guide both the configuration and selection of an appropriate 
model for the LM based AI service. 

Beyond Training: Influencing the Outcome 

We have explored the critical operational strategies for managing AI's inherent unreliability: 
Human-in-the-Loop, Statistical Analysis, and Strategic Error Trade-Offs. These methods 
treat the AI model as a black box whose outputs must be externally controlled and audited. 

For organizations leveraging modern, LM based AI services (like those used for coding, 
content generation, or summarization), modification of the underlying model through traditional 
machine learning training or fine-tuning is not cost-effective, for it requires expensive expertise 
and hardware. 

Instead, the focus shifts from improving the model to choosing a model and improving the 
interaction. The reliability of these complex, often agentic, systems relies heavily on how we 
design the calls to the service itself. This requires a new set of techniques to steer its reasoning 
and output to achieve a more reliable result. 

The next section explores these methods. 
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Language Models 

Generative AI models, especially Large Language Models (LLMs), enable new software 
approaches. Their inherent outcome reliability can be improved with self-correction, 
consensus-based responses, and explicit uncertainty statements. This allows software 
components to leverage LM based AI services in robust and predictable ways. 

Beyond Training: The Imperative of Prompt Engineering 

For organizations using third-party LM based AI services, focus shifts from improving the model 
to Prompt Engineering (AI prompt theory 2025), a new set of skills that focuses on guiding the 
model to achieve higher reliability. 

Self-Correction: An Emergent Capability 

When you get an undesired or incorrect output from an LLM, a common approach is to 
re-prompt the model with different phrasing to get the output you want. For example, the prompt 
“I want this .csv in my database” results in an undesired result while the prompt “Transform the 
file.csv file to a SQL INSERT statement” does. This technique is effective because natural 
language offers many ways to express the same intent (SaaS Prompts 2024). 

In addition, you can prompt an LLM to "critique your previous answer" or "explain what's wrong 
with it." The model uses its vast knowledge of language and its emergent reasoning abilities to 
simulate a review process and generate a corrected version. Such "self-correction" is 
fundamentally new: It's not just about a user trying again. It's a linguistic and reasoning-based 
capability of the model itself. 

This technique is often implemented using a Reflection/Refinement pattern (Kolavi 2025), 
where a system feeds an initial output back to the model, along with a set of constraints or a 
validation function, and explicitly asks it to check and revise its own work. For example, imagine 
the prompt “Transform the file.csv file to a SQL INSERT statement” generates an initial script. A 
reflection prompt would then feed that script back to the model, asking: "You just generated this 
SQL script. Please review it. Are there any potential SQL injection vulnerabilities? Does it 
correctly handle the header row? Provide a revised, more secure version." This forces the 
model to apply a new read of constraints (security, accuracy) to its own previous output, which is 
the core of self-correction. 

Consensus-Based Responses (Self-Consistency) 

In the previous section, we emphasized the value of statistical analysis and sampling to validate 
an AI system's performance. Prompt engineering offers a direct way to apply this concept to a 
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single output: Consensus-Based Responses, often called Self-Consistency or Ensemble 
Inference (AI prompt theory 2025). 

Instead of relying on a single, deterministic output, this technique involves running the same 
prompt multiple times, either on a single model with slightly different decoding parameters (like 
temperature or top_p), or across multiple AI models. Each query thus generates a distinct 
"reasoning path" and a final answer. The system then gathers this sample of outputs and takes 
a majority vote, selecting the answer that appears most frequently across all runs. 

This method effectively turns the black box into a probabilistic ensemble: by leveraging diverse 
reasoning paths, we increase the probability that the final consensus answer is correct. This 
approach mitigates the risk of incorrect "hallucination." For systems that use Constrained 
Generation (like a 'yes' or 'no' output), this voting becomes trivial, allowing organizations to set 
high acceptance thresholds, such as requiring an 80% consensus. 

Explicit Uncertainty Statements 

To tie the Generative AI process back to the Risk and Confidence Thresholds we established 
earlier, LLM infrastructures and specific models provide metrics that can be utilized to construct 
an Explicit Uncertainty Statement. 

By instructing the model to output a confidence score or to explicitly state its level of certainty 
(e.g., "I am 95% confident in this generated code structure"), the software system gains a critical 
piece of metadata (Grandperrin 2021). This allows an organization to automate the 
Human-in-the-Loop decision: 

●​ If Confidence > 90%: Automatically accept the output. 
●​ If Confidence ≤ 90%: Route the output to a human reviewer for validation. 

 

Figure 10. Example of confidence scores in action. 

This capability transforms the LLM from a simple answer machine into a risk-aware component, 
allowing software engineers to build intelligent decision layers around the generative process. 
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Beware that you do not ask the model for a confidence score by prompting. Confidence scores 
are to be obtained from the model metrics. 

Constrained Generation 

Large language models (LLMs) are incredibly versatile. They're great at generating natural 
language, but they can also be guided to follow specific rules for their output (Docherty 2025). 

When you don't give an LLM any special instructions, it will produce unstructured text in the 
form of natural language, but by adding details about how the output should be formatted and 
what values are possible, we can limit the output to a small set of options, such as a 'yes' or 'no' 
choice. This increases the chance of getting a correct and predictable answer. It may also 
facilitate automatic validation of the answer. 

 

Figure 11. Simple constrained generation. 

Architectural Constraints: Moving Beyond Natural Language 

While clever prompting works well for simple constraints (like yes/no answers), relying solely on 
natural language for complex output can still lead to unreliable formatting. 

The new, architecturally sound way to implement constrained generation is by using specific 
technical features offered by modern LLM APIs (like those from OpenAI, Anthropic, or 
Google (Google 2025)). These features enforce the structure before the model generates the 
output, making the process far more reliable: 
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1.​ JSON Schema Enforcement: You can provide the API with a strict JSON Schema 
(defining required keys, data types, and possible enumeration values). The model is then 
forced to generate a valid JSON object that strictly adheres to that schema, eliminating 
common formatting errors. 

2.​ Function Calling: You can define a specific software function’s signature and instruct 
the model to output the arguments necessary to call that function. This forces the model 
to generate reliable, structured data that a software component can immediately ingest 
and execute. 

These technical methods make constrained generation a core feature of robust software 
architecture, ensuring that the LLM's output is not just human-readable, but 
machine-consumable. 

Automated Feedback Loop for Correct Outcomes 

When a software component's context allows for automated verification of an AI model's 
output, that verification result can be used as input for a retry. One great example of this is 
code refactoring (“About GitHub Copilot coding agent” 2025). 

Here's a possible workflow: 

●​ Ask an AI model to refactor some code. To prevent the LLM from 'ballooning' the 
codebase, the initial prompt must enforce strict scope constraints (e.g., 'Only refactor the 
methods within file.py related to user authentication, and do not change any unit test 
files). 

●​ Apply the AI's output. The new code is integrated into the project. 
●​ Run code compilation. If compilation errors occur, the AI is asked to fix the build by 

being provided with the specific errors. 
●​ Run existing unit tests. If tests fail, the AI is asked to correct the code by being given 

the failed assertions. 
●​ Run other automated code quality tools. If these tools flag issues, the AI is prompted 

to fix the code quality problems. 

  Utrechtseweg 301, 3731 De Bilt, The Netherlands, info@sogyo.nl ​ ​ ​    Page 18 of 33 



 

 

Figure 12. GitHub Copilot agent architecture. 

Once the checks pass and automated quality metrics (e.g., reduced Cyclomatic Complexity, 
passing Linter scores) are met, the desired outcome is achieved. This combined validation 
ensures the code is not only correct but also desirable, readable, and maintainable. 

This principle applies to many other fields where model output can be automatically verified: 

●​ Content Generation: An AI writes a product description. An automated script checks for 
key features and grammar. If a check fails, the AI gets the feedback to revise. 

●​ Computer-Aided Design (CAD): An AI designs a part. Simulation software 
automatically tests it for structural integrity, providing feedback to the AI to refine the 
design. 

●​ Data Entry: An AI extracts data from an invoice. An automated system checks the 
extracted information against a database. If there's a mismatch, the AI is prompted to 
re-evaluate the document. 

The ability to validate AI model output automatically and immediately within a software 
component is what makes the component agentic. Other techniques can achieve validation too, 
but often result in a higher rate of incorrect outcomes and require frequent human intervention. 
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The Value of AI-Powered Software Components 
We've explored how to handle and improve the reliability of LM based AI service outcomes, but 
why build software with a degree of unreliability in the first place? 

The answer is simple: AI services offer value, even with a degree of unreliability, in three key 
areas: outperforming humans at scale, automating complex tasks, and pattern discovery. 

The power of general-purpose AI models is their ability to generate outcomes that are mostly 
correct. While you can't assume raw LLM output is accurate, it is usually close to the desired 
result (Precision Drafters 2025). 

Outperforming Humans at Scale 

AI tools can complete tasks faster than human agents, despite higher error rates, due to the 
sheer volume of data they can process (Smajic 2024). The risks of errors are offset by the ability 
to process workloads that are impossible for human teams to manage. This can lead to 
expanding services and faster service delivery without requiring a larger workforce. 

Automating Complex Tasks 

AI also enables automation in situations where clear, step-by-step workflows do not exist, or 
when dealing with unstructured data (UiPath 2025). For example, a user interacting with a 
chatbot might make a complex request in natural language, which the chatbot can process and, 
if given access to the right tools, satisfactorily resolve without a pre-defined script. 

Similarly, many workflows involve decisionmaking based on unstructured information, like a 
customer service representative deciding how to route an email based on its content. AI can 
now read incoming customer support emails and automatically tag them as a "billing issue," 
"technical problem," or "general inquiry," then route them to the right team. 

In these scenarios, AI can handle a vast number of requests, freeing up human workers to focus 
on nuanced cases that require deeper expertise. 

AI components go beyond automating existing tasks; they introduce new ways for users to 
interact with software (Gison 2025). A customer searching an e-commerce site might use an AI 
assistant that dynamically filters products and generates a personalized recommendation 
based on browsing history and stated intent. Applications that use generative AI can propose 
various designs or draft texts from a single prompt, providing the user with creative starting 
points. 
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Pattern Discovery 

The final value of AI components is their ability to reveal correlations and associations that were 
previously invisible or unknowable. This value operates on two distinct but complementary 
levels (scitechtalk tv 2024). 

 

Figure 13. Rumsfeld Matrix. 

First, AI functions as a sparring partner for human reasoning. A team can evaluate the current 
best solution, strategic plan, or diagnosis with AI, instantly cross-referencing it with historical 
outcomes and established patterns. Such use of AI models can highlight blind spots, identify 
missing variables, or suggest alternative solutions that the human group, constrained by 
their own experiences or cognitive biases, may overlook.  

Second, AI can function as a discovery engine. In complex scientific fields, the volume, 
velocity, and dimensionality of data exceeds human capacity for analysis. AI systems excel at 
discerning subtle patterns, correlations, and anomalies. By highlighting hidden connections, 
these tools shift our focus from automating the known to discovering the unknown. 

Ultimately, leveraging these AI components isn't about achieving perfection, it's about creating 
systems that permit human ingenuity to focus where it matters most.  
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The Impact of AI-Powered Software Components on Software 
Architecture 
Having discussed the value of LM based AI services and the methods for dealing with unreliable 
outcomes, we now examine their architectural impact, which varies significantly based on the 
component's task (Safe Software, publish year unknown). 

Latency 

AI models are slow regarding response times compared to non AI-powered software 
components. Therefore, it is practically unavoidable to make workflows that use such tools 
asynchronous. Luckily, there are many described patterns for integration with asynchronous 
components. 

Role of component: Processer/Transformer 

 

Figure 14. Simple, fixed workflow. 

We define a Processer/Transformer as an AI-powered software component that acts like a 
specialized, non-deterministic function call. It's often integrated via a simple API call as a step in 
an existing, fixed pipeline (e.g., summarizing text, classifying a ticket). 

For example, a system uses an LLM to take customer input and provide a summary (output) 
before a human agent reviews it. The architectural impact here is minimal in terms of flow but 
critical in terms of performance: the architecture must now account for new latency concerns 
and introduce retries or fallbacks inherent to the AI model's execution time. 
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Role of component: Router/Decision Engine 

 

Figure 15. Fixed workflow, but decision made by AI component. 

The Router/Decision Engine uses AI to introduce a new layer of dynamic routing. Instead of a 
fixed path, the system needs a more complex interface to handle the AI's probabilistic decision 
(e.g., a specific workflow ID) and a mechanism to fall back if the decision’s confidence is low. 

For example, a system uses an LLM to analyze a customer service ticket (input) and decides 
whether to route it to the Billing Workflow, Technical Support, or Sales. The architecture must 
include a Confidence Handling mechanism (e.g., rerouting to a human queue or a default 
workflow) and often a new Context Provider Layer to feed necessary state information to the 
AI for its decision-making. 
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Role of component: Autonomous Agent/Orchestrator 

 

Figure 16. No predetermined workflows; workflows emerge from AI decisions. 

This is the most complex role, often leveraging prompt engineering and techniques like 
Tool-Use or Function Calling. The impact on the software architecture is significant, moving from 
fixed, imperative workflows to a dynamic, goal-driven architecture. 

The core architecture must now include a Tool/Resource Abstraction Layer (to expose 
external APIs as "tools" to the AI) which must incorporate robust access control and security 
protocols. This is typically done by leveraging MCP (Anthropic 2024). Furthermore, the ability 
to execute the multi-step plan the AI generates is essential for Auditability, as the AI's "thought 
process" and chosen tools must be meticulously logged. 

For example, a user asks, "Book a flight and tell me the weather." The LLM (the Orchestrator) 
decides to use the Flight Booking API (tool) first, and then the Weather API (tool), dynamically 
creating a two-step workflow to fulfill the request.  
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Draft or Decide? Two Roads for AI Integration 
In summation: When positioning an AI-powered component inside your software architecture, 
you must fundamentally decide how much to trust its output. This decision defines your entire 
workflow and separates your integration strategy into two clear paths (Zhou 2025): 

The "Draft & Review" Path (Human-in-the-Loop) 

This path uses the AI component to draft an outcome, and then a human is required to validate 
or decide the next step. You're using the AI for efficiency gains, but your system does not trust 
its outcome enough to automate the next step. This is the default approach for sensitive or 
high-variability tasks. As discussed, automatic verification mechanisms can permit higher 
throughput solutions, requiring human intervention only in a subset of nuanced or sensitive 
situations. 

The "Trust & Execute" Path (Fully Automated) 

This path trusts the outcome and automatically continues the workflow. This is only viable 
when the AI's output reliability is exceptionally high, achieved by combining a high-quality base 
model with extensive mechanisms like guardrails, validation layers, and confidence checks. 
You are essentially treating the AI's output as a reliable, non-deterministic input that is safe to 
act upon. 

The Heuristic: Is your AI component a Drafting Assistant or a Go Button? 

The decision between a "Drafting Assistant" and a "Go Button" isn't about the AI's compute 
power; it's purely about the systemic risk you are willing to accept. Choosing wisely is 
paramount, as this single decision dictates the entire architecture of your fallbacks, audit logs, 
and confidence mechanisms. 
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Impact of AI-Powered Software on Software Engineering 
Most of us operate in contexts where inherent outcome reliability is 1. A component's real 
outcome reliability is always less than one, due to (in theory) fixable bugs, imperfect models, 
network failures, et cetera. However, a deterministic core is the default. 

The ability for organizations and engineers to leverage LM based AI services fundamentally 
changes how we must think about software. We must now all adopt strategies to cope with 
non-determinism because inherent outcome reliability will be less than 1 when leveraging them. 

Taking previous sections into account, this comes down to understanding our area of influence. 
Most organizations won't be training their own foundational models due to the immense cost of 
computational resources and expertise required. We are, for the most part, consumers: since 
we cannot change the models, our control is limited to what happens before and after the model 
does its work. 

Pre-processing: This is our input strategy. It's how we prepare and structure data, craft 
effective prompts, and provide the right context for the LM. 

Post-processing: This is our output-handling strategy. It's how we validate responses, 
handle potential errors, extract the useful parts and decide on the next step in our workflow, 
using the techniques we discussed previously. 

With this in mind, we can define an "LM based AI service" as any service that uses at least one 
LM, which we interact with through pre-processing and post-processing strategies.This 
definition covers a wide spectrum of tools, which we can separate into three broad groups: 

●​ Raw Models: A simple API call to a raw LM. We send a prompt, perhaps tweak 
parameters like temperature, and get a text response that we must then process. 

●​ Sophisticated Services: A more advanced service built around an LM, adding features 
like memory, augmented generation (e.g., RAG or CAG), multi-modal capabilities 
(handling images or audio), or other agent-like behaviors. 

●​ Composite Systems: A multi-agent setup where multiple sophisticated (LM-based) 
services interact. Even here, the principle holds: we provide an initial input 
(pre-processing) and handle the final output (post-processing), even if the service itself is 
a complex composition of many components. 

Ultimately, no matter how simple or complex the "black box" is, our job as engineers that build 
integrations with such services remains the same: we control the inputs and we rigorously 
manage the outputs. 

This entire relationship can be visualized as follows: 
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Conclusion: Engineering a Reliable Future 
Building and using LM based AI services presents a unique challenge: embracing the inherent 
unpredictability of these tools. As we’ve explored in this guide, achieving outcome reliability in AI 
systems isn't about eliminating every error, but about strategically managing them. We've seen 
that the trustworthiness of an AI component is influenced by our ability to model the real-world 
problem and the non-deterministic nature of the AI itself. This strategic management begins 
with understanding the system's inherent outcome reliability, the theoretical upfront 
probability of a correct result. 

By applying time-tested engineering practices like the human-in-the-loop and statistical analysis, 
and leveraging techniques like self-correction and ensemble methods, we can create robust 
systems that account for less-than-perfect outcomes. These strategies allow us to not only 
mitigate risks but also unlock significant value, culminating in the critical architectural choice: 
treating the AI component as a Drafting Assistant or a fully automated Go Button. 

Ultimately, the goal of building with LM based AI services is not to achieve 100% accuracy in 
every single instance. Instead, it’s about accepting a degree of unreliability in exchange for 
gains in scalability, and the ability to solve complex, unstructured problems. LM based AI 
services aren't a silver bullet, but by understanding its limitations and designing our systems to 
be resilient, we can build smarter software than ever before. 

As you embark on your own LM based AI service development journey, remember that reliability 
is not a feature you bolt on; it’s a core principle you engineer into your solutions and architecture 
from the very beginning. 
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Appendix 1: inherent output reliability (IOR) mathematical 
model 
Given a single fixed input (x), when feeding it to a software component (function f), the output 
(f(x)) (or set of outputs when the problem space is non-deterministic) can either be correct or 
incorrect. The set of all possible inputs (X) results in a set of outputs being correct (YC) and a set 
of outputs being incorrect (YI). The distribution among those sets is quantized by outcome 
reliability. If the correct output set is empty, the inherent outcome reliability is 0. When all outputs 
are in the correct output set, the inherent outcome reliability is 1. 
 

XC​ ∪ XI​ = X   (all possible inputs) 
YC ​∪ YI ​= Y   (all possible outputs) 
f(x)               (software component which is passed input x) 

 
XC​ = { x ∈ X ∣ f(x) ∈ YC​ } 
XI​ = { x ∈ X ∣ f(x) ∈ YI​ } 

 
Inherent outcome reliability IOR = |XC​| / |X| where 0 <= IOR <= 1 

 

 
Figure A.1. Inputs leading to (in)correct outputs  
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