Al in practice

Analysis from a software engineering

perspective

November 2025

Written by:
Joost de Jong djong@sogyo.nl

Edited by:
Glenn Mulder gmulder@soavo.nl

Version Date
1.0 Nov. 03, 2025
1.1 Nov. 05, 2025

Authors

Joost de Jong
Glenn Mulder

Joost de Jong
Glenn Mulder

Description

Release

Added visual
summary

mailto:jdjong@sogyo.nl
mailto:gmulder@sogyo.nl

Introduction
Beyond Bugs: Understanding Inherent Outcome Reliability (IOR)
Definition
The Unfixable Limitation
Example: Cat vs. Dog Image Classifier
Software components
Determinism of the problem space
Modelling possibilities of the problem space
Reliability of the software executing the model
Summary
Dealing with unreliable outcomes
Lessons from Al's Past
The "Human-in-the-Loop" Approach
Optimizing Human Verification
Risk and Confidence Thresholds
The Imperative of Auditability
Statistical Analysis
Pattern Matching for Anomaly Detection
Strategic Error Trade-Offs: Precision vs. Recall
Prioritizing Recall (Minimizing False Negatives)
Prioritizing Precision (Minimizing False Positives)
Beyond Training: Influencing the Outcome
Language Models
Beyond Training: The Imperative of Prompt Engineering
Self-Correction: An Emergent Capability
Consensus-Based Responses (Self-Consistency)
Explicit Uncertainty Statements
Constrained Generation
Architectural Constraints: Moving Beyond Natural Language
Automated Feedback Loop for Correct Outcomes
The Value of Al-Powered Software Components
Outperforming Humans at Scale
Automating Complex Tasks
Pattern Discovery

The Impact of Al-Powered Software Components on Software Architecture

Latency
Role of component: Processer/Transformer
Role of component: Router/Decision Engine

© 0o NOoOO O~ DdpPWw

N N N N DNDDNDDNDDN A A A A D Dy ey e o
W NDNDNN-_200000 NN OGO WOWWWN-=_ >~ 20 O0Oo

Role of component: Autonomous Agent/Orchestrator

Draft or Decide? Two Roads for Al Integration

The "Draft & Review" Path (Human-in-the-Loop)

The "Trust & Execute" Path (Fully Automated)
Impact of Al-Powered Software on Software Engineering
Conclusion: Engineering a Reliable Future
Appendix 1: inherent output reliability (IOR) mathematical model
References

24
25
25
25
26
28
29
30

Al-Powered Engineering: A Practical Guide

Introduction

Artificial Intelligence is shifting from niche technology to general purpose tooling (Freitag 2025).
With large language models (LLMs) available to all and the rise of Language Model (LM)
based Al services, the challenge for software engineers and organizations is no longer if
they should build with Al, but how to do so reliably. Unlike traditional software, Al-powered
features introduce a new challenge: the system can be perfect, yet still produce a wrong
answer. LLM power is impressive, but delivering dependable, high-quality features requires
specific strategies to ensure outcome reliability (Wohlin et al. 2003) in production.

Here, we discuss guidelines for building dependable Al-powered software. We start with the
concept of inherent outcome reliability, dive into practical strategies for imperfect scenarios
and techniques to improve performance, and conclude with the architectural impact of
integrating these components and key considerations for autonomous Al operation.

Beyond Bugs: Understanding Inherent Outcome Reliability

Definition

Inherent outcome reliability represents the theoretical, upfront probability that a given
software component will produce a valid output for a random, valid input, with a value ranging
from 0 to 1.

e A value of IOR=1 means you are theoretically certain that every valid input will yield a
correct output.

e A value of IOR=0 means you are theoretically certain that every valid input will result in a
wrong output.

(A more detailed mathematical explanation can be found in appendix 1.)

The Unfixable Limitation

If a software component's theoretical, upfront outcome reliability is less than 1, you can't always
trust its output. This is a fundamental limitation that cannot be fixed by better programming.

We explicitly use the terms theoretical and upfront to distinguish this concept from fixable
issues like programming bugs, faulty logic, or network failures. In those common failure cases,
the resulting output (even if it's an error message) is a truthful representation of what
happened: the failure is reported honestly. An inherent outcome reliability of less than 1,
however, means the output itself, the final answer, is an unintended falsehood, even if the
code that produced it is perfectly implemented.

Example: Cat vs. Dog Image Classifier

Example: Cat llmage Classifier
- Predictior.n Dog [RE—
(98% confidence)

=

‘N

Predictior): Dog Prediction: Cat
(98% confidence) (72% confidence)

7 72

Input Image

Consider a function IsCat(image) powered by a Machine Learning (ML) model (Paleti and
Angelou, 2024).

e Perfect Code, Inherently Imperfect: The code running the ML model is bug-free. It
processes the image and outputs "Cat" or "Not Cat (Dog)" according to the
parameterization and training of the underlying model. That is, the implementation is
correct.

e Inherent Limitation: Even the best ML models are statistical systems. Due to
ambiguous images, imperfect training data, or model limitations, there's always a
theoretical, non-zero chance it will misclassify an image (Paleti and Angelou 2024).

If IsCat(image) outputs "Cat," there's a small, built-in probability that the image is actually a dog.
This isn't a code bug, a hardware problem, or a network error. It's an unfixable limitation
because the model makes predictions based on probabilities, not absolute certainty.

Therefore, the inherent outcome reliability is less than 1 (e.g., IOR=0.98), reflecting the
theoretical chance of a wrong classification, regardless of code quality.

This IOR < 1 reality forces a shift from programming for correctness to programming for trust.

Software components

A software component, when viewed in the context of inherent outcome reliability, consists of
three dimensions, mirroring the traceability path in system development (e.g., as found in
Software Product Line Engineering (Pohl, Béckle, and Linden 2011)):

e The problem space: The real-world context you're trying to solve.
e The model: The abstraction of the problem space.
e The software: The code that executes your model.

Let's examine how each of these contributes to a component's inherent outcome reliability.

Determinism of the problem space
The problem space can be either deterministic or non-deterministic.

e In a deterministic problem space, a given input always produces the same output. For
example, in a cash register system, the total for items costing $10 and $12 will always be
$22.

e |n a non-deterministic problem space, the same input can produce different, yet valid,
outputs (Udawatta et al. 2008). For example, a game of Yahtzee produces different dice
rolls each time, but each roll is a valid outcome.

Crucially, the determinism of the problem space itself does not affect inherent outcome
reliability. If all possible outputs are valid, inherent outcome reliability is 1. This makes sense: a
system that accurately reflects reality is, by definition, reliable.

Deterministic Non-deterministic
problem space problem space
Outcome reliability 1 Outcome reliability 1

Figure 1. Deterministic vs. Non-deterministic problem space in relation to inherent outcome
reliability

Modelling possibilities of the problem space

This is where things get interesting. Even if a problem space is deterministic, it might be
impossible to create a perfect model for it. Consider fraud detection (Lindemulder and Kosinski
2024). A transaction is either fraudulent or it is not: a deterministic reality. However, creating a
perfect model is impossible because fraudulent transactions are designed to look normal. You
can't know for sure if a transaction is fraudulent without a full human investigation.

Input

Imperfect model

|

Figure 2. Imperfect modeling capabilities in relation to outcome reliability

This inability to create a perfect model for the problem space leads to an inherent outcome
reliability of less than 1. The Cynefin framework (Snowden 1999) can help determine if your
problem space is suitable for perfect modeling. In the Cynefin framework, when a problem
space resides in the Simple or Complicated domains, creating a perfect model is theoretically
possible (Mamonov 2023).

However, even in the Complicated domain, achieving a perfect model is often impractical.
While cause-and-effect relationships are discernible and solvable by experts, the number of
variables or costs and time required to map every factor can be prohibitive. As a result,
complicated domains often rely on imperfect (yet practical) models that balance accuracy with
feasibility.

In contrast, when the problem space moves into the Complex or Chaotic domain (as with
dynamic financial fraud detection) the system deals with unknowable factors, meaning a perfect
model is fundamentally impossible (Mamonov 2023).

Complex | complicated |

f

Probe Sense
e Analyze
Respond Respond
Emergent Good Practice

SACt Sense
T Categorize
Respond Respond
Novel

Best Practice

Figure 3. Cynefin framework

Reliability of the software executing the model

Traditional software execution is dependably robust: Modern systems and code reliably
translate programming instructions into predictable, correct outcomes that are infinitely
repeatable. Software itself does not contribute to the decay of this inherent reliability.

The challenge to reliability emerges when incorporating Artificially Intelligent (Al)
components. Unlike conventional, Al models operate by prediction, leading to outputs that can
be non-compliant or incorrect relative to the task'’s initial intent. In this way, leveraging Al
introduces a stochastic element to the software's execution, thereby reducing the component's
overall outcome predictability and reliability.

Input

/ Al-powered \
software

Outcome reliability <1

Figure 4. Al-powered software in relation to outcome reliability

You can improve outcome predictability and reliability by using techniques to ensure the outputs

are valid. In some cases, you can even bring inherent outcome reliability back to 1. We'll cover
that later.

Summary

In short, a software component's inherent outcome reliability is influenced by two factors:

1. Ability to model the problem space. (Refer to the Cynefin framework.)
2. Reliability of the software executing the model. (Especially with the use of
probabilistic technologies like LLM’s (Vaswani et al. 2017).)

The problem space itself has no impact on reliability. This diagram illustrates how these factors
combine to determine a software component's inherent outcome reliability:

S Inherent
E Outcome
o Reliability
E ~0
o 2
o =
o 2
o<
o
Ec
S =
Q2 0
23
o=
Inherent
B Qutcome
D Reliability
= ~1
@
o
Deterministic Probabilistic

Software representing
the Model

Figure 5. A software component’s inherent outcome reliability factors

Dealing with unreliable outcomes

Today, LM based Al services create new opportunities for organizations. As discussed in the
previous section, this introduces software components with an inherent outcome reliability of
less than one, meaning they will inevitably produce incorrect outputs. Therefore,
organizations and software engineers leveraging LM based Al services must acknowledge this
fundamental uncertainty and develop strategies to manage it.

Lessons from Al's Past

Fortunately, coping with unreliable outputs is not a new challenge in software engineering. We
can draw valuable lessons from domains where Al has been used for years, such as spam and
fraud detection or speech and image recognition. These established fields offer proven
methods for managing unpredictable, probabilistic results.

The "Human-in-the-Loop" Approach

Human assessment (5):

Post-processing (6): The system awaits a human decision on
The system post-processes the response whether the low confidence response is
and continues the request. accepted or if intervention is needed.

Invocation (1):
A user has a need and
invokes the system to
resolve that need.

Enrichment (2): Delegation (3):
The system collects contextual The system delegates (part of) the request
information pertaining to the to a non-deterministic (Al) component.

user's request. "
Confidence check (4):

The system determines confidence in the response.
High confidence responses are accepted.
Low confidence responses require human assessment.

Figure 6. Human in the loop (HITL)

The most straightforward way to manage unreliable outcomes is to introduce a human check:
the "Human-in-the-Loop" (HITL) approach (Beetroot 2025).

For example, consider an Al coding agent used to generate a software codebase. In this
scenario, HITL means a competent software developer is actively involved, steering the
model with well-drafted requirements and precise prompts. The developer uses their
expertise to validate that the generated code is not only functional but also meets critical
engineering standards, ensuring it is simple, maintainable, validated, and valuable to the
project.

Similarly, in fraud detection, an Al system might flag a transaction as 'Suspicious' (high risk),
but a human analyst still reviews the full account history before definitively blocking the
transaction, preventing a false positive for a legitimate customer.

In contrast, simply accepting Al outputs without review or constraints could be defined as
"vibe-coding pur sang." This approach, where unvalidated results are blindly integrated,
represents the highest level of risk acceptance, betting on unverified code and accepting the
high probability of future technical debt or system failure (Visibee 2025).

Optimizing Human Verification

In many cases, universal verification is not feasible. In those cases, organizations can opt for
sampling, verifying only a portion of the outcomes. Sampling is most often applied with
risk-based approach:

e High-Risk Outcomes: A business might mandate human review for any outcome where
the potential negative impact is too great, such as a financial transaction involving a
significant sum of money. By focusing verification efforts on these high-stakes results,
we can maximize the value of the human effort.

Risk and Confidence Thresholds

Risk assessment can be further optimized by incorporating confidence scores for the Al's
output (Chutani 2024). Organizations can establish formal protocols, practices and confidence
score thresholds that define the point at which the consequences of an incorrect output are
deemed acceptable without human intervention to fine-tune the balance between automation
and oversight.

The Imperative of Auditability

For the Human-in-the-Loop technique to function effectively, and to earn user trust, the entire
process must be auditable (Uday 2025). This isn't merely about regulatory compliance; it's
essential for debugging, improving system performance, and maintaining long-term
stakeholder trust in the Al system.

Statistical Analysis

Alternatively, statistical analysis, which focuses on monitoring the component's performance
over time rather than validating specific outputs, can be used to deal with low outcome
reliability.

Performing statistical analysis on complex, multi-step systems, like an agentic Al service, is
difficult. Because an agent's reasoning, tool calls, and overall process are non-deterministic,
validating a single run is often impossible. The solution is to use statistical sampling,
evaluating a small, but representative, sample of outputs using a human-in-the-loop approach
and automated evaluation techniques. This carefully selected, high-quality dataset then serves
as a statistically valid proxy for the overall system performance.

If you establish a baseline accuracy or success rate of 90%, you can monitor this metric
constantly and automatically compare it to these established values. If the monthly sampled
correctness level drops to 80%, this is a clear sign that something is fundamentally wrong. This
dip in performance could be caused by data drift (Martyr 2025), a change in statistical
properties of your input, or concept drift (Stankevichus 2025), a change in the relationship
between your input and output.

Data Drift Concept Drift

Class A

L (]

solth 18

% .

s .‘“: ?o. /w

.‘.}% y

. v '\::'_ «* “» 2 %4 InputData o

* Vgt wetis® " © Distribution T
; g Shifts

st] .

Relationship
*. 2 g, BetweenInputand
® Output Changes

Training Data (Live Data (New)) I Training Data (Live Data (New))

Figure 8. Data drift, input data changes. Concept drift, the meaning of the output changes.

By catching these performance trends early, you'll know exactly when and how to intervene. For
instance, a drop caused by data drift usually necessitates fine tuning the model with new
data, using a new version of the model or choosing another model altogether. In contrast,
concept drift might demand a deeper adjustment to the system’s underlying logic or rules to
maintain reliability.

Pattern Matching for Anomaly Detection

A core component of this statistical monitoring is pattern matching, which is used to identify
and quantify the frequency of specific output patterns, both correct and incorrect, to find
anomalies and deviations. This involves defining an expected output pattern (a sequence of
events, a data structure, or a predefined set of relationships) and comparing the component's
output against it.

By looking for specific deviations from this expected pattern, statistical methods can effectively
detect and categorize performance drops like data drift or concept drift, allowing engineers to
focus their interventions precisely where the system is failing (Onsem et al. 2022).

Strategic Error Trade-Offs: Precision vs. Recall

A key part of dealing with unreliable outcomes is determining which type of error is more
acceptable: false positives or false negatives. This choice is often framed as a strategic
trade-off between precision and recall (KeyLabs 2024). Precision is the fraction of detections
that represents a true case while recall is the fraction of true cases that were detected. The
former tells us how many wrong detections we get. The latter tells us how many of our cases
are not detected. See figure 9.

Prioritizing Recall (Minimizing False Negatives)

In high-stakes scenarios like fraud detection, you must prioritize Recall (sensitivity), which
means catching every possible positive instance. In the case of fraud, this minimizes false
negatives, i.e. cases where a fraudulent transaction is missed. The trade-off is an increase in
false positives, legitimate transactions incorrectly flagged as fraud. While these require costly
manual review, the benefit of preventing massive financial risks outweighs this inconvenience.

Prioritizing Precision (Minimizing False Positives)

Conversely, in systems where a false alarm causes disruption or distrust, you must prioritize
Precision (positive predictive value). This minimizes false positives. Consider your Al coding
agent example: if the system constantly flags correct, compliant code as 'High Risk' (a false
positive), the developer will waste time investigating or, worse, begin to ignore the warnings
altogether, eroding trust in the system. Here, you accept a few more false negatives (a small
amount of faulty code is missed) in exchange for high confidence in the agent's warnings,
allowing the developer to work efficiently. Furthermore, false negatives can be caught by the
expert developer further diminishing the impact of misclassification.

POSITIVE NEGATIVE TP
Precision =

TP + FP

POSITIVE TP FN

TP
Recall = ———o
MNEGATIVE FP TN i TP + FN

ACTUAL VALUES

Figure 9. Confusion matrix, precision vs. recall

An organization should balance Precision and Recall strategically, using responsible risk and
confidence thresholds, to determine the operational constraints that best support the ultimate
business goal. Such constraints guide both the configuration and selection of an appropriate
model for the LM based Al service.

Beyond Training: Influencing the Outcome

We have explored the critical operational strategies for managing Al's inherent unreliability:
Human-in-the-Loop, Statistical Analysis, and Strategic Error Trade-Offs. These methods
treat the Al model as a black box whose outputs must be externally controlled and audited.

For organizations leveraging modern, LM based Al services (like those used for coding,
content generation, or summarization), modification of the underlying model through traditional
machine learning training or fine-tuning is not cost-effective, for it requires expensive expertise
and hardware.

Instead, the focus shifts from improving the model to choosing a model and improving the
interaction. The reliability of these complex, often agentic, systems relies heavily on how we
design the calls to the service itself. This requires a new set of techniques to steer its reasoning
and output to achieve a more reliable result.

The next section explores these methods.

Language Models

Generative Al models, especially Large Language Models (LLMs), enable new software
approaches. Their inherent outcome reliability can be improved with self-correction,
consensus-based responses, and explicit uncertainty statements. This allows software
components to leverage LM based Al services in robust and predictable ways.

Beyond Training: The Imperative of Prompt Engineering

For organizations using third-party LM based Al services, focus shifts from improving the model
to Prompt Engineering (Al prompt theory 2025), a new set of skills that focuses on guiding the
model to achieve higher reliability.

Self-Correction: An Emergent Capability

When you get an undesired or incorrect output from an LLM, a common approach is to
re-prompt the model with different phrasing to get the output you want. For example, the prompt
“I want this .csv in my database” results in an undesired result while the prompt “Transform the
file.csv file to a SQL INSERT statement” does. This technique is effective because natural
language offers many ways to express the same intent (SaaS Prompts 2024).

In addition, you can prompt an LLM to "critique your previous answer" or "explain what's wrong
with it." The model uses its vast knowledge of language and its emergent reasoning abilities to
simulate a review process and generate a corrected version. Such "self-correction” is
fundamentally new: It's not just about a user trying again. It's a linguistic and reasoning-based
capability of the model itself.

This technique is often implemented using a Reflection/Refinement pattern (Kolavi 2025),
where a system feeds an initial output back to the model, along with a set of constraints or a
validation function, and explicitly asks it to check and revise its own work. For example, imagine
the prompt “Transform the file.csv file to a SQL INSERT statement” generates an initial script. A
reflection prompt would then feed that script back to the model, asking: "You just generated this
SQL script. Please review it. Are there any potential SQL injection vulnerabilities? Does it
correctly handle the header row? Provide a revised, more secure version." This forces the
model to apply a new read of constraints (security, accuracy) to its own previous output, which is
the core of self-correction.

Consensus-Based Responses (Self-Consistency)

In the previous section, we emphasized the value of statistical analysis and sampling to validate
an Al system's performance. Prompt engineering offers a direct way to apply this concept to a

single output: Consensus-Based Responses, often called Self-Consistency or Ensemble
Inference (Al prompt theory 2025).

Instead of relying on a single, deterministic output, this technique involves running the same
prompt multiple times, either on a single model with slightly different decoding parameters (like
temperature or top_p), or across multiple Al models. Each query thus generates a distinct
"reasoning path" and a final answer. The system then gathers this sample of outputs and takes
a majority vote, selecting the answer that appears most frequently across all runs.

This method effectively turns the black box into a probabilistic ensemble: by leveraging diverse
reasoning paths, we increase the probability that the final consensus answer is correct. This
approach mitigates the risk of incorrect "hallucination." For systems that use Constrained
Generation (like a 'yes' or 'no' output), this voting becomes trivial, allowing organizations to set
high acceptance thresholds, such as requiring an 80% consensus.

Explicit Uncertainty Statements

To tie the Generative Al process back to the Risk and Confidence Thresholds we established
earlier, LLM infrastructures and specific models provide metrics that can be utilized to construct
an Explicit Uncertainty Statement.

By instructing the model to output a confidence score or to explicitly state its level of certainty
(e.g., "l am 95% confident in this generated code structure"), the software system gains a critical
piece of metadata (Grandperrin 2021). This allows an organization to automate the
Human-in-the-Loop decision:

e If Confidence > 90%: Automatically accept the output.
e If Confidence < 90%: Route the output to a human reviewer for validation.

Confidence Score Field Walue
F

0.32 [2023-10-06

0.9 ‘name Science Fair
1.00 | participants [“Alice”, "Bob"]
Total

Figure 10. Example of confidence scores in action.

This capability transforms the LLM from a simple answer machine into a risk-aware component,
allowing software engineers to build intelligent decision layers around the generative process.

Beware that you do not ask the model for a confidence score by prompting. Confidence scores
are to be obtained from the model metrics.

Constrained Generation

Large language models (LLMs) are incredibly versatile. They're great at generating natural
language, but they can also be guided to follow specific rules for their output (Docherty 2025).

When you don't give an LLM any special instructions, it will produce unstructured text in the
form of natural language, but by adding details about how the output should be formatted and
what values are possible, we can limit the output to a small set of options, such as a 'yes' or 'no
choice. This increases the chance of getting a correct and predictable answer. It may also
facilitate automatic validation of the answer.

“ User Query: Should | adopt a robot? J

O

N/

YES

Constrained Generation
- Define format

- Possible values: YES, MAYBE, NO MAYBE

NO

L 4
[]

Figure 11. Simple constrained generation.
Architectural Constraints: Moving Beyond Natural Language

While clever prompting works well for simple constraints (like yes/no answers), relying solely on
natural language for complex output can still lead to unreliable formatting.

The new, architecturally sound way to implement constrained generation is by using specific
technical features offered by modern LLM APIs (like those from OpenAl, Anthropic, or
Google (Google 2025)). These features enforce the structure before the model generates the
output, making the process far more reliable:

1.

JSON Schema Enforcement: You can provide the API with a strict JSON Schema
(defining required keys, data types, and possible enumeration values). The model is then
forced to generate a valid JSON object that strictly adheres to that schema, eliminating
common formatting errors.

Function Calling: You can define a specific software function’s signature and instruct
the model to output the arguments necessary to call that function. This forces the model
to generate reliable, structured data that a software component can immediately ingest
and execute.

These technical methods make constrained generation a core feature of robust software
architecture, ensuring that the LLM's output is not just human-readable, but
machine-consumable.

Automated Feedback Loop for Correct Outcomes

When a software component's context allows for automated verification of an Al model's
output, that verification result can be used as input for a retry. One great example of this is
code refactoring (“About GitHub Copilot coding agent” 2025).

Here's a possible workflow:

Ask an Al model to refactor some code. To prevent the LLM from 'ballooning' the
codebase, the initial prompt must enforce strict scope constraints (e.g., 'Only refactor the
methods within file.py related to user authentication, and do not change any unit test
files).

Apply the Al's output. The new code is integrated into the project.

Run code compilation. If compilation errors occur, the Al is asked to fix the build by
being provided with the specific errors.

Run existing unit tests. If tests fail, the Al is asked to correct the code by being given
the failed assertions.

Run other automated code quality tools. If these tools flag issues, the Al is prompted
to fix the code quality problems.

Machine

'

OS context

*

Prompte
——-Streamed result:
Summarized workspace Tool call
< | Tools
Workspace —
‘ -

Figure 12. GitHub Copilot agent architecture.

Once the checks pass and automated quality metrics (e.g., reduced Cyclomatic Complexity,
passing Linter scores) are met, the desired outcome is achieved. This combined validation
ensures the code is not only correct but also desirable, readable, and maintainable.

This principle applies to many other fields where model output can be automatically verified:

e Content Generation: An Al writes a product description. An automated script checks for
key features and grammar. If a check fails, the Al gets the feedback to revise.

e Computer-Aided Design (CAD): An Al designs a part. Simulation software
automatically tests it for structural integrity, providing feedback to the Al to refine the
design.

e Data Entry: An Al extracts data from an invoice. An automated system checks the
extracted information against a database. If there's a mismatch, the Al is prompted to
re-evaluate the document.

The ability to validate Al model output automatically and immediately within a software
component is what makes the component agentic. Other techniques can achieve validation too,
but often result in a higher rate of incorrect outcomes and require frequent human intervention.

The Value of Al-Powered Software Components

We've explored how to handle and improve the reliability of LM based Al service outcomes, but
why build software with a degree of unreliability in the first place?

The answer is simple: Al services offer value, even with a degree of unreliability, in three key
areas: outperforming humans at scale, automating complex tasks, and pattern discovery.

The power of general-purpose Al models is their ability to generate outcomes that are mostly
correct. While you can't assume raw LLM output is accurate, it is usually close to the desired
result (Precision Drafters 2025).

Outperforming Humans at Scale

Al tools can complete tasks faster than human agents, despite higher error rates, due to the
sheer volume of data they can process (Smajic 2024). The risks of errors are offset by the ability
to process workloads that are impossible for human teams to manage. This can lead to
expanding services and faster service delivery without requiring a larger workforce.

Automating Complex Tasks

Al also enables automation in situations where clear, step-by-step workflows do not exist, or
when dealing with unstructured data (UiPath 2025). For example, a user interacting with a
chatbot might make a complex request in natural language, which the chatbot can process and,
if given access to the right tools, satisfactorily resolve without a pre-defined script.

Similarly, many workflows involve decisionmaking based on unstructured information, like a
customer service representative deciding how to route an email based on its content. Al can
now read incoming customer support emails and automatically tag them as a "billing issue,"
"technical problem," or "general inquiry," then route them to the right team.

In these scenarios, Al can handle a vast number of requests, freeing up human workers to focus
on nuanced cases that require deeper expertise.

Al components go beyond automating existing tasks; they introduce new ways for users to
interact with software (Gison 2025). A customer searching an e-commerce site might use an Al
assistant that dynamically filters products and generates a personalized recommendation
based on browsing history and stated intent. Applications that use generative Al can propose
various designs or draft texts from a single prompt, providing the user with creative starting
points.

Pattern Discovery

The final value of Al components is their ability to reveal correlations and associations that were
previously invisible or unknowable. This value operates on two distinct but complementary
levels (scitechtalk tv 2024).

Known Known
£ unknown Known
<)
=
=4

v

w

U

=)

5]

|

;U

z

< Unknown Unknown
g unknown known
£
g

unknown known
Knowledge

Figure 13. Rumsfeld Matrix.

First, Al functions as a sparring partner for human reasoning. A team can evaluate the current
best solution, strategic plan, or diagnosis with Al, instantly cross-referencing it with historical
outcomes and established patterns. Such use of Al models can highlight blind spots, identify
missing variables, or suggest alternative solutions that the human group, constrained by
their own experiences or cognitive biases, may overlook.

Second, Al can function as a discovery engine. In complex scientific fields, the volume,
velocity, and dimensionality of data exceeds human capacity for analysis. Al systems excel at
discerning subtle patterns, correlations, and anomalies. By highlighting hidden connections,
these tools shift our focus from automating the known to discovering the unknown.

Ultimately, leveraging these Al components isn't about achieving perfection, it's about creating
systems that permit human ingenuity to focus where it matters most.

The Impact of Al-Powered Software Components on Software
Architecture

Having discussed the value of LM based Al services and the methods for dealing with unreliable
outcomes, we now examine their architectural impact, which varies significantly based on the
component's task (Safe Software, publish year unknown).

Latency

Al models are slow regarding response times compared to non Al-powered software
components. Therefore, it is practically unavoidable to make workflows that use such tools
asynchronous. Luckily, there are many described patterns for integration with asynchronous
components.

Role of component: Processer/Transformer

Component B (leveraging Component C Done

—> }
Component A some Al service)

Figure 14. Simple, fixed workflow.

We define a Processer/Transformer as an Al-powered software component that acts like a
specialized, non-deterministic function call. It's often integrated via a simple API call as a step in
an existing, fixed pipeline (e.g., summarizing text, classifying a ticket).

For example, a system uses an LLM to take customer input and provide a summary (output)
before a human agent reviews it. The architectural impact here is minimal in terms of flow but
critical in terms of performance: the architecture must now account for new latency concerns
and introduce retries or fallbacks inherent to the Al model's execution time.

Role of component: Router/Decision Engine

’—> Component C E— Done

Component B
Component A ——— > {(leveraging some Al ——— > Component D EEE— Done
service)

\—b Component E E—— Done

?

Figure 15. Fixed workflow, but decision made by Al component.

The Router/Decision Engine uses Al to introduce a new layer of dynamic routing. Instead of a
fixed path, the system needs a more complex interface to handle the Al's probabilistic decision
(e.g., a specific workflow ID) and a mechanism to fall back if the decision’s confidence is low.

For example, a system uses an LLM to analyze a customer service ticket (input) and decides
whether to route it to the Billing Workflow, Technical Support, or Sales. The architecture must
include a Confidence Handling mechanism (e.g., rerouting to a human queue or a default
workflow) and often a new Context Provider Layer to feed necessary state information to the
Al for its decision-making.

Role of component: Autonomous Agent/Orchestrator

Orchestrator?

?

Component A Component B
(leveraging some Al »¢————— > (leveraging some Al
service) service)

? ?
Component C Component D
(leveraging some Al > €¢———>»{(leveraging some Al
service) service)

Figure 16. No predetermined workflows; workflows emerge from Al decisions.

This is the most complex role, often leveraging prompt engineering and techniques like
Tool-Use or Function Calling. The impact on the software architecture is significant, moving from
fixed, imperative workflows to a dynamic, goal-driven architecture.

The core architecture must now include a Tool/Resource Abstraction Layer (to expose
external APIs as "tools" to the Al) which must incorporate robust access control and security
protocols. This is typically done by leveraging MCP (Anthropic 2024). Furthermore, the ability
to execute the multi-step plan the Al generates is essential for Auditability, as the Al's "thought
process" and chosen tools must be meticulously logged.

For example, a user asks, "Book a flight and tell me the weather." The LLM (the Orchestrator)
decides to use the Flight Booking API (tool) first, and then the Weather API (tool), dynamically
creating a two-step workflow to fulfill the request.

Draft or Decide? Two Roads for Al Integration

In summation: When positioning an Al-powered component inside your software architecture,
you must fundamentally decide how much to trust its output. This decision defines your entire
workflow and separates your integration strategy into two clear paths (Zhou 2025):

The "Draft & Review" Path (Human-in-the-Loop)

This path uses the Al component to draft an outcome, and then a human is required to validate
or decide the next step. You're using the Al for efficiency gains, but your system does not trust
its outcome enough to automate the next step. This is the default approach for sensitive or
high-variability tasks. As discussed, automatic verification mechanisms can permit higher
throughput solutions, requiring human intervention only in a subset of nuanced or sensitive
situations.

The "Trust & Execute” Path (Fully Automated)

This path trusts the outcome and automatically continues the workflow. This is only viable
when the Al's output reliability is exceptionally high, achieved by combining a high-quality base
model with extensive mechanisms like guardrails, validation layers, and confidence checks.
You are essentially treating the Al's output as a reliable, non-deterministic input that is safe to
act upon.

The Heuristic: Is your Al component a Drafting Assistant or a Go Button?

The decision between a "Drafting Assistant” and a "Go Button" isn't about the Al's compute
power; it's purely about the systemic risk you are willing to accept. Choosing wisely is
paramount, as this single decision dictates the entire architecture of your fallbacks, audit logs,
and confidence mechanisms.

Impact of Al-Powered Software on Software Engineering

Most of us operate in contexts where inherent outcome reliability is 1. A component's real
outcome reliability is always less than one, due to (in theory) fixable bugs, imperfect models,
network failures, et cetera. However, a deterministic core is the default.

The ability for organizations and engineers to leverage LM based Al services fundamentally
changes how we must think about software. We must now all adopt strategies to cope with
non-determinism because inherent outcome reliability will be less than 1 when leveraging them.

Taking previous sections into account, this comes down to understanding our area of influence.
Most organizations won't be training their own foundational models due to the immense cost of
computational resources and expertise required. We are, for the most part, consumers: since
we cannot change the models, our control is limited to what happens before and after the model
does its work.

Pre-processing: This is our input strategy. It's how we prepare and structure data, craft
effective prompts, and provide the right context for the LM.

Post-processing: This is our output-handling strategy. It's how we validate responses,
handle potential errors, extract the useful parts and decide on the next step in our workflow,
using the techniques we discussed previously.

With this in mind, we can define an "LM based Al service" as any service that uses at least one
LM, which we interact with through pre-processing and post-processing strategies.This
definition covers a wide spectrum of tools, which we can separate into three broad groups:

e Raw Models: A simple API call to a raw LM. We send a prompt, perhaps tweak
parameters like temperature, and get a text response that we must then process.

e Sophisticated Services: A more advanced service built around an LM, adding features
like memory, augmented generation (e.g., RAG or CAG), multi-modal capabilities
(handling images or audio), or other agent-like behaviors.

e Composite Systems: A multi-agent setup where multiple sophisticated (LM-based)
services interact. Even here, the principle holds: we provide an initial input
(pre-processing) and handle the final output (post-processing), even if the service itself is
a complex composition of many components.

Ultimately, no matter how simple or complex the "black box" is, our job as engineers that build
integrations with such services remains the same: we control the inputs and we rigorously
manage the outputs.

This entire relationship can be visualized as follows:

Human assessment (7):

The system awaits a human decision on
whether the low confidence response is
accepted or if intervention is needed

Software Product
relying on LM-based
Al components
or services

@
'% .

Invocation (1):
Auser has a need and invokes the
system to resolve that need.

Pre-processing (3):

The system employs a number
of strategies to optimize the
request for delegation to an

LM-based Al component.

® ®

Enrichment (2):
The system collecis contextual information
pertaining to the user’s request from other
services or data storage.

Prompt Engineering:
Optimizing the encoding of intent
into natural language.

Ensemble Techniques:
Sampling under varied model
parameters, statistical filtering or
agreement measures.

Self-hosting or SaaS?

Running LM-based Al software g’

components requires capable hardware. —
[}
()
]
%]
o
1
?‘ Semantic Tools (MCP): . X
(] Providing utilities with simple Reasoning Inspection:
S descriptions that can be used in Deciding based on confidence

o execution plan generation. metrics from model run metadata.

Memory Intensive:
Language Models operate on in-memory
data for speed. Memory resources
correlate to available context size.

Automated Feedback:
Using tooling for verification, e.g.
build tools, linters, test suites or
executable requirements, the
response is accepted or an
updated prompt is submitted

‘Computationally Expensive:
Inference involves large neural network
calculations. GPUs / NPUs are optimized for
such operations. Available processing power
correlates to speed of inference.

Output Constraints:
Defining the structure and
constraints for validity of
generated output data.

@

Service Invocation (4):
Using service level APls, the
client makes a request of the

LM-based Al component.

nnon LM-based
Al software API ‘
|:| component

Considering service complexity:
Modern LM-based Al services have outgrown mere LLMs. Services themselves
can be as complex as regular software, with multiple interacting components.

Sophisticated Systems & Agents:

Through integration with MCP tools, Cache- (CAG) or
Retrieval-augmented Generation (RAG), or permissions to invoke
additional services, an Al component can formulate and execute

complex plans autonomously, with minimal supervision.

General Purpose vs. Expert Model:
By curating training datasets or relying on specific technologies,
generative Al can be specialized in certain fields, like coding, image

1, logical i or even

mathematical derivation.

Human in the
Loop?

Whether you should keep a
human in the loop depends on:
a) confidence in response
quality, failure detection and
recovery mechanisms, and
b) risks in case of failure.

Confidence check (6):

The system determines confidence in the
response. High confidence responses are
accepted. Low confidence responses
require human assessment.

Security & Privacy?

LM-based Al software components come
with their own security concerns.

Authentication & Authorization:
Agents act on behalf of users. Thus, the

o agent should only be able to access
8 resources that the user has access to.
g
5 0
-
3 L@ @D
2 (e
g
o NESY,
3
(=]

Data collection & training:
3 parties often collect input to train new
models with. New versions can thus leak
information included in the training data.

Secret protection:
Secrets such as API keys, tokens, etc.
«can be retrieved with malicious prompts if
not adequately protected

Service Response (5):
The service provides a response
to its client, through streams or

asynchronous reply patterns.

Multi-model systems:

Services can build on multiple enmeshed Al components. Consider
components that delegate questions to expert models or are
prompted to format output of others. Multi-agent collaboration can

both amplify quality or exacerbate error rates.

Conclusion: Engineering a Reliable Future

Building and using LM based Al services presents a unique challenge: embracing the inherent
unpredictability of these tools. As we’ve explored in this guide, achieving outcome reliability in Al
systems isn't about eliminating every error, but about strategically managing them. We've seen
that the trustworthiness of an Al component is influenced by our ability to model the real-world
problem and the non-deterministic nature of the Al itself. This strategic management begins
with understanding the system's inherent outcome reliability, the theoretical upfront
probability of a correct result.

By applying time-tested engineering practices like the human-in-the-loop and statistical analysis,
and leveraging techniques like self-correction and ensemble methods, we can create robust
systems that account for less-than-perfect outcomes. These strategies allow us to not only
mitigate risks but also unlock significant value, culminating in the critical architectural choice:
treating the Al component as a Drafting Assistant or a fully automated Go Button.

Ultimately, the goal of building with LM based Al services is not to achieve 100% accuracy in
every single instance. Instead, it's about accepting a degree of unreliability in exchange for
gains in scalability, and the ability to solve complex, unstructured problems. LM based Al
services aren't a silver bullet, but by understanding its limitations and designing our systems to
be resilient, we can build smarter software than ever before.

As you embark on your own LM based Al service development journey, remember that reliability
is not a feature you bolt on; it's a core principle you engineer into your solutions and architecture
from the very beginning.

Appendix 1: inherent output reliability (IOR) mathematical
model

Given a single fixed input (x), when feeding it to a software component (function f), the output
(f(x)) (or set of outputs when the problem space is non-deterministic) can either be correct or
incorrect. The set of all possible inputs (X) results in a set of outputs being correct (Y¢) and a set
of outputs being incorrect (Y,). The distribution among those sets is quantized by outcome
reliability. If the correct output set is empty, the inherent outcome reliability is 0. When all outputs
are in the correct output set, the inherent outcome reliability is 1.

Xc U X, =X (all possible inputs)
Yo U Y, =Y (all possible outputs)

f(x) (software component which is passed input x)

Xe={x &€ X|fx) € Y}
X ={x€X|flx) €Y}

Inherent outcome reliability IOR = |X¢| / |X| where 0 <= IOR <=1

f(x) deterministic

Xl > Y
Xc N Ye
X Y
f(x) non-deterministic
Xi Yi
XC YC

Figure A.1. Inputs leading to (in)correct outputs

References

“About GitHub Copilot coding agent.” 2025. GitHub Docs.
https://docs.github.com/en/copilot/concepts/agents/coding-agent/about-coding-agent.

Al prompt theory. 2025. “Self Consistency: Improving Reliability in LLM Outputs.”
aiprompttheory.com.
https://aiprompttheory.com/self-consistency-improving-reliability-in-lim-outputs/.

Anthropic. 2024. “Introducing the Model Context Protocol.” Anthropic.
https://www.anthropic.com/news/model-context-protocol.

Beetroot. 2025. “Human in the Loop Meets Agentic Al: Building Trust and Control in Automated
Workflows.” Human in the Loop Meets Agentic Al: Building Trust and Control in
Automated Workflows.
https://beetroot.co/ai-ml/human-in-the-loop-meets-agentic-ai-building-trust-and-control-in
-automated-workflows/.

Chutani, Gautam. 2024. “Unlocking LLM Confidence Through Logprobs | by Gautam Chutani |
Medium.” Gautam Chutani.
https://gautam75.medium.com/unlocking-lim-confidence-through-logprobs-54b26ed1b48
a.

Docherty, Andrew. 2025. “Controlling your LLM: Deep dive into Constrained Generation.”
medium.com.
https://medium.com/@docherty/controlling-your-lim-deep-dive-into-constrained-generatio
n-1e561c736a20.

Freitag, Michael. 2025. “How Artificial Intelligence Is Reshaping Industries—And What's Next.”

Forbes.

https://www.forbes.com/councils/forbesbusinesscouncil/2025/06/11/how-artificial-intellige
nce-is-reshaping-industries-and-whats-next.

Gison, Chase. 2025. “The Role of Al in Enhancing User Experience through Content.”
medium.com.
https://medium.com/@chasegison/the-role-of-ai-in-enhancing-user-experience-through-c
ontent-08fe5bd16ddc.

Google. 2025. “Structured output.” Structured output.
https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/control-generated-outp
ut.

Grandperrin, Jonathan. 2021. “How to use confidence scores in machine learning models.”
towardsdatascience.com.
https://towardsdatascience.com/how-to-use-confidence-scores-in-machine-learning-mod
els-abe9773306fa/.

KeyLabs. 2024. “Precision vs. Recall: Key Differences and Use Cases.” keylabs.ai.
https://keylabs.ai/blog/precision-vs-recall-key-differences-and-use-cases/.

Lindemulder, Gregg, and Matthew Kosinski. 2024. “What Is Fraud Detection?” IBM.
https://www.ibm.com/think/topics/fraud-detection.

Mamonov, Dmitry. 2023. “Clear and Complicated domains of the Cynefin Framework.” Clear and
Complicated domains of the Cynefin Framework.
https://medium.com/@dmitry.s.mamonov/clear-and-complicated-domains-of-the-cynefin-
framework-62b30bf4602a.

Mamonov, Dmitry. 2023. “Complex and Chaotic domains of the Cynefin Framework.” Complex

and Chaotic domains of the Cynefin Framework.

https://medium.com/@dmitry.s.mamonov/complex-and-chaotic-domains-of-the-cynefin-fr
amework-c80766fbddba.

Martyr, Reginald. 2025. “Understanding Model Drift and Data Drift in LLMs (2025 Guide) |
Generative Al Collaboration Platform.” Org.ai. https://orq.ai/blog/model-vs-data-drift.

Onsem, M. v, D. d. Paepe, S. v. Hautte, P. Bonte, V. Ledoux, A. Lejon, F. Ongenae, D. Dreesen,
and S. v. Hoecke. 2022. “Hierarchical pattern matching for anomaly detection in time
series.” sciencedirect.com.
https://www.sciencedirect.com/science/article/pii/S0140366422002298.

Paleti, Nikhil C., and Rita Angelou. 2024. “Convolutional Neural Networks: A Comprehensive
Guide | by Jorgecardete | The Deep Hub.” Medium.
https://medium.com/thedeephub/convolutional-neural-networks-a-comprehensive-guide-
5ccOb5eae175.

Pohl, Klaus, Giinter Bockle, and Frank J. van d. Linden. 2011. Software Product Line
Engineering: Foundations, Principles and Techniques. -: Springer.

Precision Drafters. 2025. “How Al is Transforming the Drafting Industry?” precisiondrafters.com.
https://www.precisiondrafters.com/post/how-ai-is-transforming-the-drafting-industry.

Safe Software. ? “Al Agent Architecture: Tutorial & Examples: Chapter 3: Al Agent Routing.”
fme.safe.com. https://fme.safe.com/guides/ai-agent-architecture/ai-agent-routing/.

scitechtalk tv. 2024. “The Potential of Al to Discover Unknown Unknowns Using Serendipity and
Out of the Box Thinking.” medium.com.
https://medium.com/@tvscitechtalk/the-potential-of-ai-to-discover-unknown-unknowns-u
sing-serendipity-and-out-of-the-box-thinking-bb49d6bdcb57.

Smajic, Nermin. 2024. “Humans, Errors, and the Rise of Al.” medium.com.

https://medium.com/@nermiX/humans-errors-and-the-rise-of-ai-d58bba45a0e2.

Snowden, David. 1999. “Cynefin framework.” Cynefin framework - Wikipedia.
https://en.wikipedia.org/wiki/Cynefin_framework.

Stankevichus, Ivan. 2025. “Keeping Al Pair Programmers On Track: Minimizing Context Drift in
LLM-Assisted Workflows.” dev.to.
https://dev.to/leonas5555/keeping-ai-pair-programmers-on-track-minimizing-context-drift-
in-lim-assisted-workflows-2dba.

Udawatta, Kapila, Mehdi Ehsanian, Sergey Maidanov, and Surya Musunuri. 2008. “Test and
validation of a non-deterministic system — True Random Number Generator.” Test and
validation of a non-deterministic system — True Random Number Generator.
https://ieeexplore.ieee.org/document/4695881.

Uday, Alney. 2025. “Why Audit Trails and Human-in-the-Loop Matter—Especially Now.” Why
Audit Trails and Human-in-the-Loop Matter—Especially Now.
https://www.linkedin.com/pulse/why-audit-trails-human-in-the-loop-matterespecially-now-
uday-alney-bbaoc.

UiPath. 2025. “What is Al automation? Definition, benefits & examples.” UiPath.
https://www.uipath.com/automation/ai-automation.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, and Llion Jones. 2017.
“[1706.03762] Attention Is All You Need.” arXiv. https://arxiv.org/abs/1706.03762.

Visibee. 2025. “Understanding The Risks Of Al-Generated Code.” Visible One.
https://visibleone.com/blog/understanding-the-risks-of-ai-generated-code/.

Wohlin, Claes, Martin Host, Per Runeson, and Anders Wesslén. 2003. “Software Reliability.”
Encyclopedia of Physical Science and Technology (Third Edition) -, no. - (1): 25-39.

https://doi.org/10.1016/B0-12-227410-5/00858-9.

Zhou, Yuxuan. 2025. “Balancing Autonomy and Human Oversight: A Review of Automation and
Control Systems in Large-Scale Industrial Processes.” Applied and Computational

Engineering 135, no. 1 (2): 154-159. 10.54254/2755-2721/2025.21266.

	AI-Powered Engineering: A Practical Guide
	Introduction
	
	Beyond Bugs: Understanding Inherent Outcome Reliability
	Definition
	The Unfixable Limitation
	Example: Cat vs. Dog Image Classifier
	Software components
	Determinism of the problem space
	Modelling possibilities of the problem space
	Reliability of the software executing the model
	Summary

	
	Dealing with unreliable outcomes
	Lessons from AI's Past
	The "Human-in-the-Loop" Approach
	Optimizing Human Verification
	Risk and Confidence Thresholds
	The Imperative of Auditability

	Statistical Analysis
	Pattern Matching for Anomaly Detection
	Strategic Error Trade-Offs: Precision vs. Recall
	Prioritizing Recall (Minimizing False Negatives)
	Prioritizing Precision (Minimizing False Positives)

	Beyond Training: Influencing the Outcome
	
	Language Models
	Beyond Training: The Imperative of Prompt Engineering
	Self-Correction: An Emergent Capability
	Consensus-Based Responses (Self-Consistency)
	Explicit Uncertainty Statements
	Constrained Generation
	Architectural Constraints: Moving Beyond Natural Language
	Automated Feedback Loop for Correct Outcomes

	
	The Value of AI-Powered Software Components
	Outperforming Humans at Scale
	Automating Complex Tasks
	Pattern Discovery

	The Impact of AI-Powered Software Components on Software Architecture
	Latency
	Role of component: Processer/Transformer
	Role of component: Router/Decision Engine
	Role of component: Autonomous Agent/Orchestrator

	Draft or Decide? Two Roads for AI Integration
	The "Draft & Review" Path (Human-in-the-Loop)
	The "Trust & Execute" Path (Fully Automated)

	
	Impact of AI-Powered Software on Software Engineering
	
	Conclusion: Engineering a Reliable Future
	Appendix 1: inherent output reliability (IOR) mathematical model
	References

